Skip to the end of the images gallery Byt navigering
Skip to the beginning of the images gallery Byt navigering
Nya enkla sätt att lösa ekvationer
Hur man löser ekvationer med huvudräkning, vilket stärker tankeförmågan och förbättrar minnet
ePUB
3,9 MB
Vattenmärkning
ISBN-13: 9789175696782
Förlag: Books on Demand
Utgivningsdatum: 16.05.2017
Språk: Svenska
finns som:
45,00 kr
inkl. moms
Tillgänglig för nedladdning
Vänligen observera att du inte kan läsa den här e-boken på en Amazon Kindle, utan endast på enheter med programvara som kan visa ePub-filer. Mer information
I den här boken presenterar jag en unik andragradsformel, vilken är en omskrivning av p-q-formeln. Omskrivningen ledde till att ekvationerna kunde lösas nästan dubbelt så snabbt med den nya formeln, när den jämfördes i ett test med p-q-formeln. I ett annat test var den nya formeln också betydligt snabbare än den vediska formeln. Det unika med den nya formeln var att ekvationerna vid testet kunde lösas med huvudräkning, vilken förbättrar minnet och ökar mental skärpa och intelligens.
Då jag upptäckte att den mellersta koefficienten i en andragradsekvation innehöll all information om dess ursprung, ledde detta till regler som skulle förenkla lösningen av alla ekvationer. Ursprunget i en andragradsekvation kunde då lokaliseras, och därmed blev det möjligt att skapa en regel för hur koefficienterna skulle delas upp i faktorer. Med hjälp av denna regel och någon övning kan svaret på en ekvation både beräknas och kontrolleras snabbt, oberoende av hur stora koefficienterna är. Denna universiella metod är avsedd att användas innan ekvationen löses med formel.
Eftersom ursprunget till en andragradsekvation kunde lokaliseras, var det också lätt att hitta ursprunget till andra typer av ekvationer, och därmed kunde nya metoder skapas. Det här ledde till att en tredjegradsekvation kunde lösas utan att ta några omvägar som polynomdivision, gissning eller prövning av en rot. När ursprunget till ekvation kan lokaliseras, är det lika lätt att lösa en femtegradsekvation som en andragradsekvation på samma enkla sätt som att låsa upp ett kassaskåp med nyckel. Syftet med boken är främst att göra det så enkelt som möjligt för studenterna att lösa ekvationer, men också att ge dem en bättre inblick i ursprunget till en ekvation.
Då jag upptäckte att den mellersta koefficienten i en andragradsekvation innehöll all information om dess ursprung, ledde detta till regler som skulle förenkla lösningen av alla ekvationer. Ursprunget i en andragradsekvation kunde då lokaliseras, och därmed blev det möjligt att skapa en regel för hur koefficienterna skulle delas upp i faktorer. Med hjälp av denna regel och någon övning kan svaret på en ekvation både beräknas och kontrolleras snabbt, oberoende av hur stora koefficienterna är. Denna universiella metod är avsedd att användas innan ekvationen löses med formel.
Eftersom ursprunget till en andragradsekvation kunde lokaliseras, var det också lätt att hitta ursprunget till andra typer av ekvationer, och därmed kunde nya metoder skapas. Det här ledde till att en tredjegradsekvation kunde lösas utan att ta några omvägar som polynomdivision, gissning eller prövning av en rot. När ursprunget till ekvation kan lokaliseras, är det lika lätt att lösa en femtegradsekvation som en andragradsekvation på samma enkla sätt som att låsa upp ett kassaskåp med nyckel. Syftet med boken är främst att göra det så enkelt som möjligt för studenterna att lösa ekvationer, men också att ge dem en bättre inblick i ursprunget till en ekvation.
Skriv din egen recension
Det finns inga presskommentarer tillgängliga just nu.